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ABSTRACT 

Version 2.3 of the RELAP5-3D computer program includes 
all features and models previously available only in the 
ATHENA version of the code.  These include the addition of 
new working fluids (i.e., ammonia, blood, carbon dioxide, 
glycerol, helium, hydrogen, lead-bismuth, lithium, lithium-lead, 
nitrogen, potassium, sodium, and sodium-potassium) and a 
magnetohydrodynamic model that expands the capability of the 
code to model many more thermal-hydraulic systems.  In 
addition to the new working fluids along with the standard 
working fluid water, one or more noncondensable gases (e.g., 
air, argon, carbon dioxide, carbon monoxide, helium, hydrogen, 
krypton, nitrogen, oxygen, sf6, xenon) can be specified as part 
of the vapor/gas phase of the working fluid.  These 
noncondensable gases were in previous versions of RELAP5-
3D.  Recently four molten salts have been added as working 
fluids to RELAP5-3D Version 2.4, which has had limited 
release.  These molten salts will be in RELAP5-3D Version 2.5, 
which will have a general release like RELAP5-3D Version 2.3. 
Applications that use these new features and models are 
discussed in this paper. 

INTRODUCTION 

The RELAP5 series of codes has been developed at the 
Idaho National Laboratory for over 25 years under sponsorship 
of the U. S. Department of Energy, the U. S. Nuclear 
Regulatory Commission, members of the International Code 
Assessment and Applications Program, members of the Code 
Applications and Maintenance Program, and members of the 
International RELAP5 Users Group.  Specific world-wide 
applications of the code have included simulations of transients 
of light water reactor systems such as loss of coolant, 
anticipated transients without scram, and operational transients 
such as loss of feedwater, loss of offsite power, station blackout, 
and turbine trip.  RELAP5-3D (Ref. 1), the latest in the series of 
RELAP5 codes, extends the applicability of earlier versions to 
include an integrated multidimensional thermal-
hydraulic/neutronic capability.  In addition to calculating the 
behavior of a reactor coolant system during a transient, it can be 
used for simulation of a wide variety of hydraulic and thermal 
transients in both nuclear and nonnuclear systems involving 
mixtures of vapor, liquid, noncondensable gases, and 
nonvolatile solute.  The 3D capability in RELAP5-3D includes 
3D hydrodynamics and 3D neutron kinetics [the 3D neutronics 
is based on the NESTLE code (Ref. 2)].  RELAP5-3D was 
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recently modified to include all the ATHENA (Ref. 3) features 
and models that were previously only available in the ATHENA 
configuration.   The ATHENA features and models are currently 
used primarily in Generation IV reactor applications, space 
reactor applications, and nuclear fusion applications. 

RELAP5-3D is also used in a SCDAP/RELAP5-3D (Ref. 
4) configuration that is designed to calculate for severe accident 
situations the overall reactor coolant system thermal-hydraulic 
response, core damage progression, and reactor vessel heatup 
and damage.  RELAP5-3D (also true of SCDAP/RELAP5-3D) 
is also used in an integrated code system configuration 
consisting of RELAP5-3D and other codes such as FLUENT, 
CFX, and CONTAIN.  The coupling of the codes in this 
configuration is coordinated using an executive program (Ref. 
5) in concert with the Parallel Virtual Machine (PVM) message 
passing software.  The coupling can be done explicitly or semi-
implicitly.  For example, the FLUENT/RELAP5-3D (Ref. 6) 
coupling configuration is designed to perform detailed 3D 
analyses using FLUENT’s capability while the boundary 
conditions required by the FLUENT calculation are provided by 
the balance-of-system model created using RELAP5-3D.  The 
FLUENT/RELAP5-3D coupling configuration is currently used 
primarily in Generation IV reactor applications.  RELAP5-3D is 
also used for the thermal-hydraulic module in the real-time 
nuclear plant simulation code RELAP5-R/T (Refs. 7, 8, 9), 
which is used in training simulators at nuclear power plants 
around the world.  There is also a visualization system for the 
various RELAP5-3D configurations, which is called the 
RELAP5-3D Graphical User Interface (RGUI) (Ref. 10).  

This paper discusses Version 2.3 of the RELAP5-3D 
computer program that now includes all features and models 
that were previously available in the ATHENA configuration 
version of the code.  They are new working fluids and a 
magnetohydrodynamic model.  This paper also discusses four 
molten salts that have been added as working fluids to 
RELAP5-3D Version 2.4, which has had limited release.  These 
molten salts will be in RELAP5-3D Version 2.5, which will 
have a general release like RELAP5-3D Version 2.3.  
Applications that use these new features and models will be 
discussed in this paper. 

WORKING FLUIDS 

In the 1980’s, various working fluids began to be added to 
the ATHENA configuration (Ref. 11, 12) of the RELAP5 code. 
When RELAP5-3D began in the 1990’s to extend the capability 
of RELAP5, the ATHENA configuration (with its various 
working fluids) was continued and enhanced in the RELAP5-
3D code. 

The working fluids that were previously available in 
RELAP5-3D and are still available to RELAP5-3D Version 2.3 
are as follows: light water (specified as h2o), heavy water (d2o), 

1984 light water (h2on), and 1995 light water (h2o95).  The 
additional working fluids now available to RELAP5-3D  
Version 2.3 that were previously available only in the ATHENA 
configuration are as follows:  ammonia (nh3), blood (blood), 
carbon dioxide (co2), glycerol (glycerol), helium (he), hydrogen 
(h2), lead-bismuth (bipb), lithium (li), lithium-lead (lipb), 
nitrogen (n2), potassium (k), sodium (na), and sodium-
potassium (nak). 

Four molten salts [LiF-BeF2 (0.66 – 0.34) (ms1), NaBF4-
NaF (0.92 – 0.08) (ms2), LiF-NaF-KF (0.465 – 0.115 – 0.42) 
(ms3), and NaF-ZrF4 (0.50 – 0.50) (ms4)] have recently been 
added as working fluids to RELAP5-3D Version 2.4. 

The basic properties for light water (specified as h2o) are 
calculated from default thermodynamic tables (Ref. 13, 14, 15) 
that tabulate saturation properties as a function of temperature, 
saturation properties as a function of pressure, and single-phase 
properties as a function of pressure and temperature.  These 
tables are based on the 1967 ASME Steam Tables (Ref. 13), 
which are calculated using the 1967 International Formulation 
Committee (IFC) Formulation for Industrial Use and is known 
as IFC-67.  The properties and derivatives in the tables are 
saturation pressure, saturation temperature, specific volume, 
specific internal energy, and three derivatives (isobaric thermal 
expansion coefficient, isothermal compressibility, and specific 
heat at constant pressure).  The transport properties (viscosity, 
thermal conductivity, and surface tension) are based on 
correlations from the 1967 ASME Steam Tables (Ref. 13) and 
Schmidt (Ref. 16). 

The basic properties for heavy water (specified as d2o) are 
calculated from optional (activated by the user in the input 
deck) thermodynamic tables (Ref. 17, 18, 19) that tabulate 
saturation properties as a function of temperature, saturation 
properties as a function of pressure, and single-phase properties 
as a function of pressure and temperature.  These tables are 
based on the formulation from the Atomic Energy of Canada 
Limited (AECL) (Ref. 18) and the WASP program (Ref. 19) 
from the National Aeronautics and Space Administration 
(NASA).  The properties and derivatives in the tables are 
saturation pressure, saturation temperature, specific volume, 
specific internal energy, and three derivatives (isobaric thermal 
expansion coefficient, isothermal compressibility, and specific 
heat at constant pressure).  The transport properties (viscosity, 
thermal conductivity, and surface tension) are based on 
correlations from FLOWTRAN (Ref. 20) and TRAC (Ref. 21). 

The basic properties for 1984 light water (specified as 
h2on) are calculated from optional (activated by the user in the 
input deck) thermodynamic tables (Ref. 22) that tabulate 
saturation properties as a function of temperature, saturation 
properties as a function of pressure, and single-phase properties 
as a function of pressure and specific internal energy.  These 
tables are based on the 1984 U. S. National Bureau of 
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Standards and the National Research Council of Canada 
(NBS/NRC) Steam Tables (Ref. 22).  The properties and 
derivatives in the tables are saturation pressure, saturation 
temperature, specific volume, temperature, three derivatives 
(isobaric thermal expansion coefficient, isothermal 
compressibility, and specific heat at constant pressure), and 
transport properties (viscosity, thermal conductivity, and surface 
tension).  The transport properties are based on correlations 
from the National Research Council of Canada (NBS/NRC) 
Steam Tables (Ref. 22). 

The basic properties for 1995 light water (specified as 
h2o95) are calculated from optional (activated by the user in the 
input deck) thermodynamic tables (Ref. 23) that tabulate 
saturation properties as a function of temperature, saturation 
properties as a function of pressure, and single-phase properties 
as a function of pressure and temperature.  These tables are 
based on the 1995 Steam Tables from the International 
Association for the Properties of Water and Steam (IAPWS) 
(Ref. 23); it is known as IAPWS-95.  IAPWS also released an 
industrial formation in 1997 (known as IAPWS-97), which is 
not as accurate, but more efficient than the 1995 formulation.  
Since the tables in RELAP5-3D are only built once (during 
installation), the code uses IAPWS-95 because it is more 
accurate.  The properties and derivatives in the tables are 
saturation pressure, saturation temperature, specific volume, 
specific internal energy, and three derivatives (isobaric thermal 
expansion coefficient, isothermal compressibility, and specific 
heat at constant pressure).  The transport properties (viscosity, 
thermal conductivity, and surface tension) use tables based on 
correlations from the IAPWS-95 Steam Tables (Ref 23). 

The basic properties for ammonia (specified as nh3) are 
calculated from optional (activated by the user in the input 
deck) thermodynamic tables (Ref. 24, 25, 26, 27) that tabulate 
saturation properties as a function of temperature, saturation 
properties as a function of pressure, and single-phase properties 
as a function of pressure and temperature.  These tables are 
based on the formulation from Reynolds (Ref. 26) and were 
found to be in reasonable agreement with data in Vargaftik (Ref. 
27).  The properties and derivatives in the tables are saturation 
pressure, saturation temperature, specific volume, specific 
internal energy, and three derivatives (isobaric thermal 
expansion coefficient, isothermal compressibility, and specific 
heat at constant pressure).  The transport properties are from 
formulations based on least square fits to data from Vargaftik 
(Ref. 27) and the Handbook of Chemistry and Physics (Ref. 
28).  The date of Reference 28 is 1973, which is the actual date 
of handbook that was used in this work (References 26 and 27 
are also dated in the 1970’s).  More recent editions of these 
references could be used to improve the properties. 

The basic properties for blood (specified as blood) are 
calculated from optional (activated by the user in the input 
deck) thermodynamic tables (Ref. 29, 30, 31) that tabulate 

saturation properties as a function of temperature, saturation 
properties as a function of pressure, and single-phase properties 
as a function of pressure and temperature.  These tables are 
based on the formulation from Daubert and Danner (Ref. 30) as 
well as Cooney (Ref. 31).  The properties and derivatives in the 
tables are saturation pressure, saturation temperature, specific 
volume, specific internal energy, and three derivatives (isobaric 
thermal expansion coefficient, isothermal compressibility, and 
specific heat at constant pressure).  The transport properties 
(viscosity, thermal conductivity, and surface tension) are from 
formulations based on least square fits to data from Daubert and 
Danner (Ref. 30) as well as Cooney (Ref. 31). 

The basic properties for carbon dioxide (specified as co2) 
are calculated from optional (activated by the user in the input 
deck) thermodynamic tables (Ref. 32, 33) that tabulate 
saturation properties as a function of temperature, saturation 
properties as a function of pressure, and single-phase properties 
as a function of pressure and temperature.  These tables are 
based on the formulation from National Institute of Standards 
and Technology (NIST) (Ref. 33).  The properties and 
derivatives in the tables are saturation pressure, saturation 
temperature, specific volume, specific internal energy, and three 
derivatives (isobaric thermal expansion coefficient, isothermal 
compressibility, and specific heat at constant pressure).  The 
transport properties (viscosity, thermal conductivity, and surface 
tension) are based on tables and correlations from NIST (Ref. 
33), Hejzlar (Ref. 34), Dostal (Ref. 35), Vesovic et al. (Ref. 36), 
and Daubert et al. (Ref. 37). 

The basic properties for glycerol (specified as glycerol) are 
calculated from optional (activated by the user in the input 
deck) thermodynamic tables (Ref. 29, 30) that tabulate 
saturation properties as a function of temperature, saturation 
properties as a function of pressure, and single-phase properties 
as a function of pressure and temperature.  These tables are 
based on the formulation from Daubert and Danner (Ref. 30).  
The properties and derivatives in the tables are saturation 
pressure, saturation temperature, specific volume, specific 
internal energy, and three derivatives (isobaric thermal 
expansion coefficient, isothermal compressibility, and specific 
heat at constant pressure).  The transport properties (viscosity, 
thermal conductivity, and surface tension) are from formulations 
based on least square fits to data from Daubert and Danner 
(Ref. 30). 

The basic properties for helium (specified as he) are 
calculated from optional (activated by the user in the input 
deck) thermodynamic tables (Ref. 24, 26, 27, 38, 39) that 
tabulate saturation properties as a function of temperature, 
saturation properties as a function of pressure, and single-phase 
properties as a function of pressure and temperature.  These 
tables are based on the formulations and least square fits to data 
from Reynolds (Ref. 26) and Vargaftik (Ref. 27).  The 
properties and derivatives in the tables are saturation pressure, 
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saturation temperature, specific volume, specific internal 
energy, and three derivatives (isobaric thermal expansion 
coefficient, isothermal compressibility, and specific heat at 
constant pressure).  The transport properties (viscosity, thermal 
conductivity, and surface tension) are from formulations based 
on least square fits to data from Vargaftik (Ref. 27) and the 
Handbook of Chemistry and Physics (Ref. 28). 

The basic properties for hydrogen (specified as h2) are 
calculated from optional (activated by the user in the input 
deck) thermodynamic tables (Ref. 24, 26, 27) that tabulate 
saturation properties as a function of temperature, saturation 
properties as a function of pressure, and single-phase properties 
as a function of pressure and temperature.  These tables are 
based on the formulations and least square fits to data from 
Reynolds (Ref. 26) and Vargaftik (Ref. 27).  The properties and 
derivatives in the tables are saturation pressure, saturation 
temperature, specific volume, specific internal energy, and three 
derivatives (isobaric thermal expansion coefficient, isothermal 
compressibility, and specific heat at constant pressure).  The 
transport properties (viscosity, thermal conductivity, and surface 
tension) are from formulations based on least square fits to data 
from Vargaftik (Ref. 27) and the Handbook of Chemistry and 
Physics (Ref. 28). 

The basic properties for lead-bismuth (specified as bipb) 
are calculated from optional (activated by the user in the input 
deck) thermodynamic tables (Ref. 40, 41, 42, 43, 44, 45, 46) 
that tabulate saturation properties as a function of temperature, 
saturation properties as a function of pressure, and single-phase 
properties as a function of pressure and temperature.  These 
tables are based on Young’s soft sphere model formulation (Ref. 
42) and the Clausius-Clapeyron formulation. The formulations 
used were based on least square fits to data from Hultgren et al. 
(Ref. 44), Kutateladze et al. (Ref. 45), and Nesmeyanov (Ref. 
46).  The properties and derivatives in the tables are saturation 
pressure, saturation temperature, specific volume, specific 
internal energy, and three derivatives (isobaric thermal 
expansion coefficient, isothermal compressibility, and specific 
heat at constant pressure).  The transport properties (viscosity, 
thermal conductivity, and surface tension) are from formulations 
based on least square fits to data from Touloukian et al. (Ref. 
47) and Lyon (Ref. 48). 

The basic properties for lithium (specified as li) are 
calculated from optional (activated by the user in the input 
deck) thermodynamic tables (Ref. 24, 26, 27, 39, 42, 43, 49, 
50) that tabulate saturation properties as a function of 
temperature, saturation properties as a function of pressure, and 
single-phase properties as a function of pressure and 
temperature.  These tables are based on Young’s soft sphere 
model formulation (Ref. 42) and Reynolds’ formulation (Ref. 
26). The formulations used were based on fits to data from 
Young (Ref. 42), Blink (Ref. 50), and Vargaftik (Ref. 27).  The 
properties and derivatives in the tables are saturation pressure, 

saturation temperature, specific volume, specific internal 
energy, and three derivatives (isobaric thermal expansion 
coefficient, isothermal compressibility, and specific heat at 
constant pressure).  The transport properties (viscosity, thermal 
conductivity, and surface tension) are from formulations and 
least square fits to data from Vargaftik (Ref. 27), Maroni et al. 
(Ref. 51) and Smith et al. (Ref. 52). 

The basic properties for lithium-lead (specified as lipb) are 
calculated from optional (activated by the user in the input 
deck) thermodynamic tables (Ref. 24, 42, 46, 50, 53) that 
tabulate saturation properties as a function of temperature, 
saturation properties as a function of pressure, and single-phase 
properties as a function of pressure and temperature.  These 
tables are based on Young’s soft sphere model formulation. The 
formulation used was based on fits to data from Young (Ref. 
42), Blink (Ref. 50), and Nesmeyanov (Ref. 46).  The 
properties and derivatives in the tables are saturation pressure, 
saturation temperature, specific volume, specific internal 
energy, and three derivatives (isobaric thermal expansion 
coefficient, isothermal compressibility, and specific heat at 
constant pressure).  The transport properties (viscosity, thermal 
conductivity, and surface tension) are from formulations and 
least square fits to data from Vargaftik (Ref. 27) and the 
Handbook of Chemistry and Physics (Ref. 28). 

The basic properties for nitrogen (specified as n2) are 
calculated from optional (activated by the user in the input 
deck) thermodynamic tables (Ref. 24, 26, 27, 38, 39, 53, 54) 
that tabulate saturation properties as a function of temperature, 
saturation properties as a function of pressure, and single-phase 
properties as a function of pressure and temperature.  These 
tables are based on the formulations and least square fits to data 
from Reynolds (Ref. 26), Vargaftik (Ref. 27), and Angus et al. 
(Ref. 54).  The properties and derivatives in the tables are 
saturation pressure, saturation temperature, specific volume, 
specific internal energy, and three derivatives (isobaric thermal 
expansion coefficient, isothermal compressibility, and specific 
heat at constant pressure).  The transport properties (viscosity, 
thermal conductivity, and surface tension) are from formulations 
based on least square fits to data from Vargaftik (Ref. 27) and 
the National Bureau of Standards (Ref. 55). 

The basic properties for potassium (specified as k) are 
calculated from optional (activated by the user in the input 
deck) thermodynamic tables (Ref. 24, 26, 27, 42, 49, 56) that 
tabulate saturation properties as a function of temperature, 
saturation properties as a function of pressure, and single-phase 
properties as a function of pressure and temperature.  These 
tables are based on Young’s soft sphere model formulation (Ref. 
42, 56) and Reynolds’ formulation (Ref. 26). The formulations 
used were based on fits to data from Young (Ref. 42, 56) and 
Vargaftik (Ref. 27).  The properties and derivatives in the tables 
are saturation pressure, saturation temperature, specific volume, 
specific internal energy, and three derivatives (isobaric thermal 
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expansion coefficient, isothermal compressibility, and specific 
heat at constant pressure).  The transport properties (viscosity, 
thermal conductivity, and surface tension) are from formulations 
and least square fits to data from Vargaftik (Ref. 27) and the 
Handbook of Chemistry and Physics (Ref. 28). 

The basic properties for sodium (specified as na) are 
calculated from optional (activated by the user in the input 
deck) thermodynamic tables (Ref. 24, 26, 27, 38, 42, 57) that 
tabulate saturation properties as a function of temperature, 
saturation properties as a function of pressure, and single-phase 
properties as a function of pressure and temperature.  These 
tables are based on Young’s soft sphere model formulation (Ref. 
42, 57) and Reynolds’ formulation (Ref. 26). The formulations 
used were based on fits to data from Young (Ref. 42, 57) and 
Vargaftik (Ref. 27).  The properties and derivatives in the tables 
are saturation pressure, saturation temperature, specific volume, 
specific internal energy, and three derivatives (isobaric thermal 
expansion coefficient, isothermal compressibility, and specific 
heat at constant pressure).  The transport properties (viscosity, 
thermal conductivity, and surface tension) are from formulations 
from Gierszewski et al. (Ref. 58) and least square fits to data 
from Vargaftik (Ref. 27). 

The basic properties for sodium-potassium (specified as 
nak) are calculated from optional (activated by the user in the 
input deck) thermodynamic tables (Ref. 24, 26, 27, 38, 42, 56, 
57, 59) that tabulate saturation properties as a function of 
temperature, saturation properties as a function of pressure, and 
single-phase properties as a function of pressure and 
temperature.  These tables are based on Young’s soft sphere 
model formulation (Ref. 42) and Reynolds’ formulation (Ref. 
26). The formulations used were based on fits to data from 
Young (Ref. 42, 56, 57) and Vargaftik (Ref. 27).  The properties 
and derivatives in the tables are saturation pressure, saturation 
temperature, specific volume, specific internal energy, and three 
derivatives (isobaric thermal expansion coefficient, isothermal 
compressibility, and specific heat at constant pressure).  The 
transport properties (viscosity, thermal conductivity, and surface 
tension) are from formulations from Gierszewski et al. (Ref. 58) 
and least square fits to data from Vargaftik (Ref. 27) and 
Handbook of Physics and Chemistry (Ref. 28). 

The basic properties for molten salt 1 (specified as ms1), 
molten salt 2 (specified as ms2), molten salt 3 (specified as 
ms3), and molten salt 4 (specified as ms4) are calculated from 
optional (activated by the user in the input deck) 
thermodynamic tables (Ref. 60, 61, 62, 63, 64, 65, 66) that 
tabulate saturation properties as a function of temperature, 
saturation properties as a function of pressure, and single-phase 
properties as a function of pressure and temperature.  The four 
molten salts are LiF-BeF2 (0.66 – 0.34) (ms1), NaBF4-NaF 
(0.92 – 0.08) (ms2), LiF-NaF-KF (0.465 – 0.115 – 0.42) (ms3), 
and NaF-ZrF4 (0.50 – 0.50) (ms4), where the mole fraction of 
each component is given in parentheses.  Molten salts ms1 and 

ms3 are generally referred to as Flibe and Flinak, respectively. 
These tables are based on a simplified equation of state, which 
is similar to the one used by Sabharwall et al. (Ref. 61) in an 
older version of ATHENA, and it was extended to higher 
pressures and temperatures for RELAP5-3D. The simplified 
equation of state is based on formulations from Powers et al. 
(Ref. 62), Cantor et al. (Ref. 63), Cantor (Ref. 64), Chase (Ref. 
65), and Knacke et al. (Ref. 66). The properties and derivatives 
in the tables are saturation pressure, saturation temperature, 
specific volume, specific internal energy, three derivatives 
(isobaric thermal expansion coefficient, isothermal 
compressibility, and specific heat at constant pressure), and 
transport properties (viscosity, thermal conductivity, and surface 
tension).  The transport properties are from formulations from 
Powers et al. (Ref. 62); Cantor et al. (Ref. 63); Cantor (Ref. 
64); Bird, Stewart, and Lightfoot (Ref. 67); and Williams (Ref. 
68).

MAGNETOHYDRODYNAMIC MODEL 

The magnetohydrodynamic (MHD) effect, occurring when 
a fluid of high electrical conductivity moves through a magnetic 
field, is a common phenomenon in fusion reactor systems.  A 
liquid metal flowing through a duct enveloped in a magnetic 
field experiences induced electromotive forces due to the qv x 
B forces acting upon the electrons in the conduction band, 
giving rise to electric currents in the liquid (q = electric charge, 
v = liquid velocity, B = magnetic force).  Because of this energy 
conversion, there is an effective energy loss from the fluid flow.  
The RELAP5-3D model modifies the viscous energy loss 
coefficient (i.e., the friction loss coefficient) to account for this 
loss.  Application of this model in RELAP5-3D is limited to 
pipe/annulus/pressurizer components that contain the working 
fluids lithium, lithium-lead, or sodium-potassium as subcooled 
liquid. 

The model used to calculate the MHD effect in RELAP5-
3D was developed at the Idaho National Laboratory (Ref. 69, 
70, 71), and it is based on the work from the University of 
California at Los Angeles and the Argonne National Laboratory.  
The model allows calculation of the pressure gradient resulting 
from the MHD effect.  The model allows a circular duct and a 
rectangular duct.  The model allows a uniform (constant non-
fringe volume) magnetic field and a non-uniform (spatially 
varying fringe volume) magnetic field.  A fringe volume is a 
volume at the edge of the magnetic field, where the field is non-
uniform.  The magnetic field is assumed perpendicular to the 
duct.  The dimensionless Hartman number and the wall 
conduction ratio are used in the model. 

APPLICATIONS 

The fluids helium and nitrogen in the code have been 
recently used in the scoping transient analysis of the very high 
temperature reactor (VHTR) concept (Ref. 72).  Low and high 
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pressure loss of forced convection cooling transients were 
simulated. 

The fluid helium in the code has been recently been used to 
analyze the helium gas-cooled fast reactor (GFR) concept (Ref. 
73).  The analysis was done to examine the potential for 
laminarization in the GFR design. 

The fluid carbon dioxide in the code has been recently been 
used to support the development of a supercritical carbon 
dioxide cycle in the GFR concept (Ref. 74).  One of the 
applications has been in the verification of the new compressor 
model in RELAP5-3D (Ref. 75). 

The fluid lead-bismuth in the code has been recently used 
in the design and analysis of lead-bismuth cooled reactors (Ref. 
41).  The code was used in the design of corrosion experiments 
at the INL. 

Various fluids and the magnetohydrodynamic model in the 
code have been used to analyze fusion loss-of-cooling accidents 
(Ref. 76).  The code was used in the International 
Thermonuclear Experimental Reactor (ITER) international 
fusion design study. 

CONCLUSIONS

This paper has discussed Version 2.3 of the RELAP5-3D 
computer program that now includes all features and models 
that were previously available in the ATHENA configuration 
version of the code.  They are new working fluids and a 
magnetohydrodynamic model.  This paper also discussed four 
molten salts that have been added as working fluids to 
RELAP5-3D Version 2.4, which has had limited release.  These 
molten salts will be in RELAP5-3D Version 2.5, which will 
have a general release like RELAP5-3D Version 2.3.  
Applications that use these new features and models were 
discussed in this paper. 
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